$C_{13}H_{12}O_3$

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.032	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.048	Extinction correction:
S = 3.513	$(1 + gI_c)^{-1}$ applied to F_c
2219 reflections	Extinction coefficient:
194 parameters	$1.22(4) \times 10^{-5}$
All H-atom parameters	Atomic scattering factors
refined	from International Tables
$w = 4F_o^2 / [\sigma^2(I) + (0.02F_o^2)^2]$	for X-ray Crystallogra-
$(\Delta/\sigma)_{\rm max} = 0.03$	phy (1974, Vol. IV, Tables
	2.2B and 2.3.1)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

Table 2. Selected geometric parameters (Å, °)

01-C1 01-C12 02-C7 02-C11 03-C11 C1-C2 C1-C10 C1-C10	1.363 (1) 1.415 (2) 1.402 (1) 1.346 (2) 1.418 (2) 1.370 (1) 1.353 (2)	C4C5 C4C9 C5C6 C6C7 C7C8 C8C9 C9C10	1.417 (2) 1.421 (1) 1.365 (2) 1.407 (2) 1.362 (1) 1.414 (1) 1.418 (1)
C3—C4	1.422 (2)	en-eis	1.400 (2)
C1-O1-C12 C7-O2-C11 O1-C1-C2 O1-C1-C10 C2-C1-C10 C1-C2-C3 C2-C3-C4 C3-C4-C5 C3-C4-C9 C5-C4-C9 C4-C5-C6 C5-C6-C7	118.1 (1) 119.7 (1) 114.4 (1) 125.2 (1) 120.4 (1) 120.7 (1) 121.0 (1) 122.42 (9) 118.22 (9) 119.31 (9) 121.3 (1) 118.5 (1)	$\begin{array}{c} 02-C7-C6\\ 02-C7-C8\\ C6-C7-C8\\ C7-C8-C9\\ C4-C9-C8\\ C4-C9-C10\\ C8-C9-C10\\ C8-C9-C10\\ C1-C10-C9\\ 02-C11-C3\\ 03-C11-C13\\ 03-C11-C13 \end{array}$	120.3 (1) 116.91 (9) 122.6 (1) 119.78 (9) 118.58 (9) 119.94 (9) 121.45 (9) 122.5 (1) 110.7 (1) 126.7 (1)
C10-C1-O1-C12 C6-C7-O2-C11	-5.2 (2) 67.2 (2)	C7—O2—C11—O3	1.6 (2)

Programs used include MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982), MolEN (Fair, 1990) and ORTEP (Johnson, 1965). The two octants, inequivalent in point group 222, were not averaged. Refinement of the inversion-related structure led to slightly worse agreement, wR = 0.04803 versus 0.04786.

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved Support for this work was provided by a grant from the National Science Foundation.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and geometry, least-squares-planes data and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP71678 (19 pp.). Copics may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1081]

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gorelic, A. M., Reznichenko, A. V., Andronova, N. A. & Luk'yanets, E. A. (1983). J. Org. Chem. USSR, 19, 183-189.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G.,
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Prince, P., Fronczek, F. R. & Gandour, R. D. (1989). Acta Cryst. C45, 1255-1256.
- Prince, P., Fronczek, F. R. & Gandour, R. D. (1991a). Acta Cryst. C47, 2218-2220.
- Prince, P., Fronczek, F. R. & Gandour, R. D. (1991b). Acta Cryst. C47, 2226-2227.
- Watson, W. H., Nagl, A. & Eduok, E. (1989). Acta Cryst. C45, 303-306.

Acta Cryst. (1994). C50, 798-801

11-Ketoprogesterone

VIVEK K. GUPTA, RAJNIKANT AND K. N. GOSWAMI*

Department of Physics, University of Jammu, Jammu Tawi 1, India

S. K. MAZUMDAR

Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Calcutta 64, India

K. K. BHUTANI

Regional Research Laboratory, Jammu Tawi 1, India

(Received 24 February 1992; accepted 25 June 1993)

Abstract

In the title compound, 4-pregnen-3,11,20-trione, $C_{21}H_{28}O_3$, ring A exists in a sofa conformation.

Rings B and C adopt chair conformations and ring D has a 13β , 14α half-chair conformation. The A/B ring junction is quasi-trans, while ring systems B/C and C/D are trans fused about the C(8)—C(9) and C(13)—C(14) bonds, respectively.

Comment

As part of our crystallographic investigation of a series of progesterone steroids, the crystal structure of the title compound (I) is reported. The isolation of this compound was reported originally by Peterson *et al.* (1952) and it has been re-isolated by the CrO₃ oxidation of 11α -hydroxyprogesterone (Bhutani, 1989).

A general view of the molecule indicating the numbering scheme is shown in Fig. 1, and the unitcell packing of 11-ketoprogesterone is shown in Fig. 2.

Fig. 1. ORTEP (Johnson, 1976) view of the molecule with displacement ellipsoids at 50% probability.

The mean value of the $C(sp^3)$ — $C(sp^3)$ bonds [1.535 (4) Å] is the same as that commonly observed [1.533 Å (Sutton, 1965)], although the bond lengths C(9)—C(10), C(8)—C(14), C(13)—C(17) and C(8)— C(9) show some significant deviations. The bond angles C(8)—C(14)—C(15), C(10)—C(9)—C(11), C(12)—C(13)—C(17), C(14)—C(13)—C(17) and C(13)—C(17)—C(20) show significant deviations from the ideal tetrahedral value of 109.4° (Table 2). These deviations are common in steroids as a result of the strain induced by ring junctions, side chains and unsaturated bonds. The C(4)—C(5) bond length indicates double-bond nature.

Fig. 2. Packing diagram viewed down the c axis.

Ring A has a distorted sofa conformation with asymmetry parameters $\Delta C_s[C(1)-C(4)] = 9.6^\circ$, $\Delta C_2[C(1)-C(2)] = 16.0^\circ$ (Duax & Norton, 1975). Ring B has a normal chair conformation with the best rotational axis bisecting C(5)-C(10) and C(7)-C(8) and asymmetry parameter $\Delta C_2[C(5)-C(10)] =$ 3.1°. The best mirror plane passes through C(5) and C(8), with $\Delta C_s[C(5)-C(8)] = 1.7^\circ$. Ring C is also in a chair conformation with the best rotational axis bisecting C(8)-C(9) and C(12)-C(13); $\Delta C_2[C(8)-C(9)] = 4.3^\circ$. The best mirror plane passes through C(9) and C(13), with $\Delta C_s[C(9)-C(13)] = 2.9^\circ$.

Ring D has a 13β , 14α half-chair conformation with pseudorotation parameters (Altona, Geise & Romers, 1968) $\Delta = 6.9^{\circ}$ and $\varphi_m = 46.3^{\circ}$ $\{\Delta C_2[C(13)-C(14)] = 4.7^{\circ}, \Delta C_s[C(13)] = 14.3^{\circ}\}$. The atoms C(13) and C(14) are 0.446 (3) and -0.300 (3) Å, respectively, from the plane formed by atoms C(15), C(16) and C(17). The dihedral angle between the least-squares planes of rings A and D [29.49 (12)°] indicates a slight folding of the molecule probably due to steric interactions.

Newman projections along the bonds involved in ring fusion are shown in Fig. 3. Atoms H(81) and H(91), as well as C(18) and H(141), have antiperiplanar configurations.

The intra- and intermolecular hydrogen bonds which contribute to the stabilization of the molecular structure are summarized in Table 2.

Experimental

Crystals of the title compound [m.p. 447-449 K, rotation $+274^{\circ}$ (1% CHCl₃)] were grown from acetone by slow evaporation.

Crystal data

$C_{21}H_{28}O_3$	$D_{\rm x} = 1.220 {\rm Mg} {\rm m}^{-3}$
$M_r = 328.45$	Cu $K\alpha$ radiation
Orthorhombic	λ = 1.5418 Å
P2 ₁ 2 ₁ 2 ₁	$\theta = 16-28^{\circ}$
a = 6.2525 (4) Å	$\mu = 0.596 \text{ mm}^{-1}$
<i>b</i> = 12.7576 (3) Å	T = 293 K
c = 22.4174 (5) Å	Rectangular
$V = 1788.17 \text{ Å}^3$	$0.45 \times 0.35 \times 0.22$ mm
Z = 4	Colourless
Data collection	
Enraf-Nonius CAD-4	$\theta_{\rm max} = 70^{\circ}$
diffractometer	$h = 0 \rightarrow 7$
ω -2 θ scans	$k = 0 \rightarrow 15$
Absorption correction:	$l = 0 \rightarrow 27$
none	2 standard reflections
2116 measured reflections	monitored every 98
1953 independent reflections	reflections

1810 observed reflections

 $[I \geq 2.5\sigma(I)]$

Refinement	
Refinement on F	

R = 0.064 wR = 0.074 S = 0.981810 reflections 329 parameters All H-atom parameters refined

$w = 1/[\sigma^{2}(F_{o}) + 0.020(F_{o})^{2}]$ (Δ/σ)_{max} = 0.71 $\Delta\rho_{max} = 0.215 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.247 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from *SHELX*76 (Sheldrick, 1976)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	ν	7	Una
O(1)	0.2692 (8)	-0.1252(2)	0.6995 (2)	0.1063 (14)
0(2)	-0.1857 (8)	0.2594 (3)	0.5466 (2)	0 1167 (15)
0(3)	0.0074 (7)	0.7498 (2)	0.5280 (2)	0.0993 (11)
$\dot{\mathbf{C}}(\mathbf{i})$	0.0479 (8)	0.0778 (3)	0.6068 (2)	0.0748 (11)
C(2)	0.0368 (8)	-0.0306(3)	0.6349 (2)	0.0795 (12)
C(3)	0.1936 (6)	-0.0413 (3)	0.6856 (2)	0.0766 (11)
C(4)	0.2409 (6)	0.0554 (3)	0.7183 (2)	0.0708 (10)
C(5)	0.1595 (5)	0.1484 (3)	0.7054 (1)	0.0633 (9)
C(6)	0.1935 (8)	0.2385 (3)	0.7471 (1)	0.0747 (12)
C(7)	0.2646 (6)	0.3383 (3)	0.7156(1)	0.0680 (10)
C(8)	0.1141 (5)	0.3667 (2)	0.6640(1)	0.0554 (8)
C(9)	0.0960 (5)	0.2718 (2)	0.6211 (1)	0.0584 (8)
C(10)	0.0191 (5)	0.1685 (3)	0.6508 (1)	0.0610 (9)
C(11)	0.0290 (7)	0.3053 (3)	0.5656 (2)	0.0747 (10)
C(12)	0.0535 (8)	0.4017 (3)	0.5338(1)	0.0780 (13)
C(13)	0.0613 (5)	0.4954 (2)	0.5767 (1)	0.0564 (7)
C(14)	0.1985 (4)	0.4612 (2)	0.6301 (1)	0.0569 (8)
C(15)	0.2374 (7)	0.5631 (3)	0.6639 (2)	0.0720 (11)
C(16)	0.2606 (8)	0.6455 (3)	0.6146 (2)	0.0784 (13)
C(17)	0.1898 (5)	0.5934 (2)	0.5563 (1)	0.0632 (8)
C(18)	-0.1680 (5)	0.5264 (4)	0.5952 (2)	0.0774 (12)
C(19)	-0.2150 (6)	0.1753 (3)	0.6730 (2)	0.0778 (11)
C(20)	0.0743 (6)	0.6647 (3)	0.5134 (2)	0.0723 (10)
C(21)	0.0474 (10)	0.6273 (3)	0.4505 (2)	0.0917 (15)

Table 2. Bond lengths (Å), angles (°), endocyclic torsion angles (°) and hydrogen-bonding geometry (Å, °)

$447 - 440$ K rotation $\pm 274^{\circ}$,	···, /
$\frac{1}{1}$,	C(1)—C(2)	1.521 (5)	C(10)C(19)	1.548 (4)
tone by slow evaporation.	C(1)C(10)	1.531 (5)	C(11) - C(12)	1.512 (5)
	C(2)C(3)	1.507 (6)	C(11)O(2)	1.218 (6)
	C(3)—O(1)	1.210 (5)	C(12) - C(13)	1.535 (4)
$h_{\rm c} = 1.220 {\rm Mg m^{-3}}$	C(3)—C(4)	1.465 (5)	C(13)-C(14)	1.536 (3)
Ko rediction	C(4)—C(5)	1.323 (5)	C(13)-C(17)	1.554 (3)
	C(5)—C(6)	1.496 (4)	C(13)C(18)	1.544 (4)
= 1.5418 A	C(5)—C(10)	1.527 (3)	C(14)—C(15)	1.524 (4)
= 16-28°	C(6)—C(7)	1.522 (5)	C(15)C(16)	1.532 (5)
$= 0.596 \text{ mm}^{-1}$	C(7)—C(8)	1.534 (4)	C(16)—C(17)	1.531 (5)
= 203 K	C(8)—C(9)	1.550 (3)	C(17)C(20)	1.507 (4)
- 233 K	C(8)—C(14)	1.519 (3)	C(20)—C(21)	1.498 (6)
ectangular	C(9)—C(10)	1.552 (4)	C(20)—O(3)	1.208 (4)
$45 \times 0.35 \times 0.22 \text{ mm}$	C(9) - C(11)	1.530 (5)		
olourless	C(2) - C(1) - C(10)	114.5 (3)	C(9) - C(10) - C(19)	112.5 (2)
	C(1) - C(2) - C(3)	111.4 (3)	C(9) - C(11) - C(12)	115.8 (3)
	C(2) - C(3) - C(4)	115.6 (3)	C(9) - C(11) - O(2)	124.1 (3)
	C(2) - C(3) - O(1)	121.8 (4)	C(12) - C(11) - O(2)	120.0 (3)
$_{\text{nax}} = 70^{\circ}$	C(4) - C(3) - O(1)	122.4 (4)	C(11) - C(12) - C(13)	110.4 (2)
$= 0 \rightarrow 7$	C(3) - C(4) - C(5)	124.6 (3)	C(12) - C(13) - C(14)	106.5 (2)
$= 0 \rightarrow 15$	C(4) - C(5) - C(6)	119.8 (2)	C(12) - C(13) - C(17)	117.2 (2)
$= 0 \rightarrow 27$	C(4) - C(5) - C(10)	123.1 (3)	C(12) - C(13) - C(18)	109.7 (2)
$-0 \rightarrow 27$	C(6) - C(5) - C(10)	116.9 (2)	C(14) - C(13) - C(17)	99.7 (2)
standard reflections	C(5) - C(6) - C(7)	113.2 (2)	C(14)-C(13)-C(18)	112.4 (2)
monitored every 98	C(6) - C(7) - C(8)	111.6 (2)	C(17) - C(13) - C(18)	110.6 (2)
reflections	C(7) - C(8) - C(9)	109.1 (2)	C(8) - C(14) - C(13)	114.9 (2)
intensity variation: none	C(7)-C(8)-C(14)	110.5 (2)	C(8) - C(14) - C(15)	118.9 (2)
monsity variation. none	C(9) - C(8) - C(14)	109.5 (1)	C(13) - C(14) - C(15)	103.5 (2)
	C(8) - C(9) - C(10)	114.8 (2)	C(14) - C(15) - C(16)	103.9 (3)

$\begin{array}{c} C(8)-C(9)-C(11)\\ C(10)-C(9)-C(11)\\ C(1)-C(10)-C(5)\\ C(1)-C(10)-C(9)\\ C(1)-C(10)-C(9)\\ C(5)-C(10)-C(9)\\ C(5)-C(10)-C(9)\\ C(5)-C(10)-C(9)\\ C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-$	$\begin{array}{c} 108.8 \ (2) & C(15) \\ 115.3 \ (2) & C(13) \\ 108.7 \ (2) & C(13) \\ 108.7 \ (2) & C(13) \\ 109.1 \ (2) & C(16) \\ 111.1 \ (2) & C(17) \\ 107.9 \ (2) & C(17) \\ 107.9 \ (2) & C(17) \\ 107.1 \ (2) & C(21) \\ -C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ C(3)-C(4)-C(5) \\ C(4)-C(5)-C(10) \\ C(3)-C(10)-C(1) \\ C(5)-C(10)-C(1) \\ C(10)-C(1)-C(2) \\ -C(5)-C(6)-C(7) \\ C(6)-C(7)-C(8) \\ C(7)-C(8)-C(9) \\ C(7)-C(8)-C(9) \\ C(10)-C(5)-C(6) \\ C(7)-C(8)-C(9) \\ C(10)-C(1)-C(12) \\ C(10)-C(13)-C(14) \\ -C(13)-C(14)-C(8) \\ -C(14)-C(15) \\ -C(15)-C(15) \\ -C(15)-C(15) \\ -C(15)-C(15) \\ -C(15)-C(15) \\ -C(14)-C(15) \\ -C(15)-C(15) \\ -C(15) \\ -C(15)-C(15) \\ -C(15) \\ -C(15)-C(15) \\ -C(15) \\ -C(15) \\ -C(15)-C(15) \\ -C(15) \\ $	$\begin{array}{c})-C(16)-C(17)\\)-C(17)-C(16)\\)-C(17)-C(20)\\)-C(20)-C(21)\\)-C(20)-C(21)\\)-C(20)-O(3)\\)-C(20)-O(3)\\)-C(20)-O(3)\\)-C(20)-O(3)\\ (-54,4(4))\\ (-50,3(4))\\ $	106.8 (3) 104.3 (2) 115.1 (2) 114.8 (2) 117.5 (3) 122.3 (3) 120.1 (3)
C(13)- C(14)-	-C(14) - C(15) - C(16) -C(15) - C(16) - C(17)	-36.2 (3) 11.2 (3)	
C(15)- C(16)-	-C(16) - C(17) - C(13) -C(17) - C(13) - C(14)	-38.7(2)	
$\begin{array}{c} D-H\cdots A \\ C(1)-H(12)\cdots O(2) \\ C(19)-H(192)\cdots O(2) \\ C(16)-H(161)\cdots O(1^{1} \\ C(12)-H(121)\cdots O(2^{10} \\ \end{array}\right)$	$\begin{array}{c} H \cdots A \\ 2.40 \ (6) \\ 2.43 \ (4) \\) 2.76 \ (4) \\) 2.44 \ (4) \end{array}$	$D \cdots A$ 3.053 (6) 3.035 (6) 3.490 (5) 3.183 (6) i) 1 + r 1 - y 1	$D - H \cdots A$ 130 (5) 135 (4) 129 (3) 124 (3) - 7
Gynanety et	······), .,	······································	

Table 3. Puckering parameters

Puckering parameters from Cremer & Pople (1975).

Ring A $q_2 = 0.364 \text{ Å}$ Q = 0.442 Å $\theta = 55.3^{\circ}$	$q_3 = 0.251 \text{ Å}$ $\varphi = 11.6^{\circ}$	Ring C $q_2 = 0.044 \text{ Å}$ Q = 0.574 Å $\theta = 4.4^{\circ}$	$q_3 = 0.573 \text{ Å}$ $\varphi = 260.2^{\circ}$
Ring <i>B</i> $q_2 = 0.062 \text{ Å}$ Q = 0.534 Å $\theta = 173.3^{\circ}$	$q_3 = -0.530 \text{ Å}$ $\varphi = 64.2^{\circ}$	Ring <i>D</i> q ₂ = 0.456 Å	φ = 193.9°

Data were corrected for Lorentz and polarization effects. The structure was solved by direct methods using *SHELXS86* (Sheldrick, 1985). Isotropic refinement of the structure by least-squares methods using *SHELX76* (Sheldrick, 1976) was followed by anisotropic refinement of all the non-H atoms. All H atoms except H(213) were located from a difference Fourier map and their positions and isotropic displacement parameters were refined. H(213) was fixed geometrically.

One of us (VKG) is thankful to the Department of Atomic Energy, Government of India, Bombay, for financial support.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, least-squares-planes data and dihedral angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71705 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1009]

References

- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.
- Bhutani, K. K. (1989). Private communication, Regional Research Laboratory, Jammu Tawi, India.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure, Vol. I. New York: Plenum.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Peterson, D. H., Murray, H. C., Eppstein, S. H., Reineke, L. M., Weintraub, A., Meister, P. D. & Leigh, H. M. (1952). J. Am. Chem. Soc. 74, 5933-5936.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS80. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sutton, L. E. (1965). Editor. Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No. 18. London: The Chemical Society.

Acta Cryst. (1994). C50, 801-803

2-(2-Hydroxy-5-methylphenyl)-5-chlorobenzotriazole, C₁₃H₁₀ClN₃O

A. LEWANOWICZ

Institute of Organic and Physical Chemistry, Technical University of Wroclaw, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

F. BAERT

Laboratoire de Dynamique et Structure de matériaux moléculaires, associé au CNRS URA 801, Université des Sciences et Techniques de Lille Flandres Artois, 59655 Villeneuve d'Ascq CEDEX, France

(Received 22 March 1993; accepted 27 September 1993)

Abstract

Preliminary results of an X-ray crystal structure analysis show that the title molecule [2-(5-chloro-2benzotriazolyl)-4-methylphenol] is practically planar in the crystalline state. There is an intramolecular hydrogen bond in which the hydroxyl group serves as a donor to the N3 atom of the benzotriazole moiety. Such systems, which undergo intramolecular proton transfer, are widely used as UV stabilizers.

Comment

The 2-(2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (Cltin) molecule belongs to a class of